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Introduction

Discrete dynamical systems

I X topological space (usually a compact manifold)

I f : X → X homeomorphism

I study the orbit structure of the Z-action {f n}n∈Z (where
f n = f ◦ f ◦ · · · ◦ f ).

I Of (x) = {f n(x) : n ∈ Z} the orbit of x

I Behavior of f n(x) as n→∞ or −∞ (asymptotic behavior of
orbits).

I Periodic orbits? Invariant measures? Etc.



Dynamics of one-dimensional homeomorphisms

I f : T1 = R/Z→ T1 orientation-preserving homeomorphism
I Model dynamics: rigid rotation Rα(x) = x + α (mod Z).

I α = p/q (mod Z) rational =⇒ all orbits are periodic of
period q

I α irrational =⇒ all orbits are dense (minimal dynamics).

I Poincaré’s idea: measure the “average asymptotic rotation” of
a general homeomorphism:

ρ(f ) = lim
n→∞

f̂ n(x)− x

n
(mod Z)

where f̂ : R→ R is a lift of f to the universal covering (i.e.
πf̂ = f π where π : R→ T1 is the projection).

I This “rotation number” does not depend on the choices of x
or the lift.



Dynamics of one-dimensional homeomorphisms

Theorem (Poincaré)

I ρ(f ) = p/q (mod Z) =⇒ there is a periodic orbit, and all
periodic orbits have the same period q

I ρ(f ) irrational =⇒ f is monotonically semiconjugate to a
rigid rotation, and all orbits have the same limit (which is
either a unique cantor set Λ or the whole circle).

“Theorem” (Poincaré)

The dynamics of homeomorphisms of T1 can be completely
classified.

Key aspects

I Possible dynamics are simple.

I All orbits behave in a relatively similar way.

I Bounded deviations.



Dimension two: explosion of new phenomena.

Example: Smale’s horseshoe

Shows up frequently. Infinitely many periodic orbits (of all
periods). Positive entropy. Sensitive dependence on initial
conditions; “chaos”.



Area-preserving homeomorphisms

For the rest of the talk we will consider area-preserving surface
homeomorphisms: f : S → S such that µ(f (E )) = µ(E ) for all
Borel sets E , where µ is the area measure on S .
“Typical” phase portrait:



Rotation in dimension two

Trivial example

f : A = T1 × [0, 1]→ A, f (x , y) = (x + sin(2πy), y)
has orbits with many different “average rotation” speeds, and
periodic orbits with all kinds of periods.

Poincaré-Birkhoff Theorem
If f : A→ A preserves area, orientation and boundary components
and has rotation numbers of opposite signs in the two boundary
circles, then there are fixed points in A.

Corollary

There are inifnitely many periodic points in A of arbitrarily large
periods.

Remark (Birkhoff, Mather)

If there are no essential invariant “curves” then: rich dynamics.



Rotation in dimension two

I f : T2 → T2 = R2/Z2 homeomorphism homotopic to the
identity

I Two directions of rotation.

I As in the circle, consider a lift f̂ : R2 → R2 to the universal
covering, i.e. πf̂ = f π where π : R2 → T2 is the projection.

The rotation vector of z is

ρ(f̂ , z) = lim
n→∞

f̂ n(z)− z

n
.

It measures the asymptotic average rotation of π(z) along the two
homological directions of T2.

I The limit doesn’t always converge;

I When it does, it usually depends on z .



Rotation set (Misiurewicz-Ziemian, 89)

The rotation set ρ(f̂ ) is the set of all limits of the form

lim
k→∞

f̂ nk (zk)− zk
nk

, with zk ∈ R2 and nk →∞.

The rotation vector of an invariant measure µ ∈M(f ) is

ρµ(f̂ ) =

∫
φ dµ,

where φ displacement function (induced on T2 by f̂ − Id).

I ρ(f̂ , z) exists µ-a.e z .

I ρµ(f̂ ) =
∫
ρ(f̂ , z) dµ.

I ρ(f̂ ) = {ρµ(f̂ ) : µ ∈M(f )}.
I It is compact and convex, and it is the convex hull of the set

of rotation vectors of points.



Shape of the rotation set

I Which compact convex sets are rotation sets?
I Single point sets;
I Some intervals;
I Convex polygons with rational vertices (Kwapisz, 1995)
I There is an example which is not a polygon (but almost);
I That’s about all that is known.

I Is there some compact convex set which is not a rotation set?
Recent result (Tal, Le Calvez 2016): Yes, a specific interval.

I Is there some compact convex set nonempty interior which
is not a rotation set?

I Can the rotation set have uncountably many extremal points?

I Can it be a circle?



Sublinear rotation

ρ(f̂ , z) = v =⇒ the orbit of z escapes towards ∞ with average
velocity v . If the orbit of z escapes sublinearly (e.g. if
|f̂ n(z)− z | = (

√
n, 0)) then ρ(f̂ , z) = (0, 0) (i.e. the rotation

vector does not distinguish it from a fixed point).

General idea
Rotation vectors in two opposite directions =⇒ there is no
sublinear rotation in the transverse direction.

Examples: Mather ’91 and Slijepcevic ’01 (twist maps), Bortolatto
and Tal ’12 (certain ergodic maps), Addas-Zanata, Garcia and Tal
’13 (Dehn isotopy class).



Sublinear rotation

Theorem (Guelman, K., Tal ’13)

If ρ(f̂ ) ⊂ {0} × R and it has more than one point, then there is no
horizontal rotation at all. Specifically, there is an invariant vertical
annulus, and so supz∈R2,n∈Z |(f̂ n(z)− z)1| <∞ (i.e. uniformly
bounded horizontal displacement).

In other words, there is a dichotomy:

I Either the dynamics is reduced to an annular dynamics, or

I there are three points with non-collinear rotation vectors

The latter case means the dynamics is extremely rich (see later).

Remark
This was (mostly) generalized removing the area preservation, by
P. Dávalos, with a completely different proof.



Sublinear rotation: irrotational homeomorphisms

In the circle, null rotation number =⇒ uniformly bounded
displacement. A similar property does not hold on T2.

Example with sublinear diffusion (K., Tal ’12)

There is a C∞ ergodic diffeomorphism of T2 such that
ρ(f̂ ) = {(0, 0)} but almost every orbit accumulates on all
directions at infinity.

Objection: the example has a very large set of fixed points (a fully
essential continuum, i.e. the complement of a disjoint union of
open topological disks) which is topologically “bad” (e.g. not
locally connected). This is the only possibility.

Theorem (K., Tal ’13)

In order to have such an example the set of fixed points must be
large and nasty. More precisely: if ρ(f̂ ) = {(0, 0)} then either f is
“annular” or Fix(f ) is fully essential and non-locally connected.

Recently improved by Tal and Le Calvez (2016).
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Fat rotation sets

If ρ(f̂ ) has nonempty interior, then:

I Positive topological entropy (Llibre-McKay ’91)
I Abundance of periodic orbits and invariant sets:

I Every extremal or interior element of ρ(f̂ ) with rational
coordinates is realized by a periodic point (Franks ’89)

I For every v ∈ int(ρ(f̂ )) there is a compact invariant set Kv

with rotation vector v . (Misiurewicz-Zieman ’91)
I more!

Remark

I ρ(f̂ ) has nonempty interior ⇐⇒ there are three points with
non-collinear rotation vectors;

I “strictly toral” dynamics;

I “typical” for area-preserving maps (C r -generic, any r ≥ 0).



Motivation

Typical figure in area-preserving dynamics: many “elliptic islands”
and a complementary “instability region” with rich dynamics.

Chirikov-Taylor Standard Map

f : T2 → T2 induced by f̂ (x , y) = (x + y , y + α sin(2π(x))).



Motivation

Zaslavsky Web Map

M : T2 → T2 lifted by M̂(x , y) = (y ,−x − α sin(2πy − β))
and f = M4 (btw: rotation set has nonempty interior)



Motivation
I Kolmogorov-Arnold-Moser (KAM) theory provides a local

explanation for the existence of elliptic islands under certain
condition for regular maps.

I For instance: for a C r -generic diffeomorphism (r large), any
elliptic fixed point is the intersection of a nested sequence (Di )
of invariant topological disks bounded by circles with irrational
rotation numbers. Each Di contains hyperbolic periodic
points with homoclinic intersections, etc. [Moser, Zehnder]

I Global picture? How rich is the dynamics outisde elliptic
islands?

I Can we define “maximal” islands? Are they bounded?



“Theorems”

Periodic island = periodic open topological disk U.
We say that U is (homotopically) bounded if
D(U) = {diameter of a lift of U to the universal covering} <∞

“Theorem”
The general picture of a partition of the space into bounded
periodic islands and a “large” complementary region with
interesting dynamics holds whenever f is “strictly” toral.

Particular case
Homeomorphisms of T2 with a rotation set with interior. Generic.

“Theorem”
In general, in order to have an unbounded island, the fixed point
set must be large (essential: not deformable to a point).



Precise statement

Theorem (K., Tal ’13)

If int(ρ(f̂ )) 6= ∅ and f is area-preserving then there exists a
partition of T2 into two sets, C(f ) and I(f ), where:

I I(f ) is a disjoint union of periodic bounded open topological
disks (“periodic islands”). Consists of all points which belong
to some periodic island.

I C(f ) is connected, weakly transitive, has sensitive dependence
on initial conditions, positive entropy (“chaotic region”);

I ρ(f̂ ,Bε(z)) = ρ(f̂ ) for all z ∈ C(f ) (“uniform diffusion”);

I Every rotation vector realized by a periodic point [ergodic
measure, compact invariant set] is also realized by a periodic
point [ergodic measure, compact invariant set] in C(f )
(“rotational dynamics is realized in C(f )”).

C(f ) was already studied by Jäger (different definition). Key
obstruction to conclude many properties: unbounded islands.
Addas-Zanata ’13: if f is C 1+α, the bound is uniform.
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Example



Transitivity

Corollary

If f is transitive (i.e. has a dense orbit) and ρ(f̂ ) has interior, there
are no islands at all.

Theorem (Tal ’12; Guelman, K., Tal ’13)

f transitive and (0, 0) ∈ int(ρ(f̂ )) ⇐⇒ f̂ transitive.



Key Result: “Bounded Disks Lemma”

Bounded disks lemma (K., Tal ’13)

Let f be a nonwandering homeomorphism homotopic to the
identity such that Fix(f ) is inessential. Then all f -invariant open
topological disks are (uniformly) bounded.

[True on any surface, and on any homotopy class in T2]

Remark
There exists a C∞ area-preserving ergodic diffeomorphism of T2

homotopic to Id with an invariant island U such that any lift of U
of R2 intersects every fundamental domain.



Further results and problems

I Similar results for abelian actions (Benayon PhD thesis, 2013)

I Surfaces of higher genus (K.-Tal, 2015)

I The “bounded disks lemma” leads to the following “triple
boundary lemma”
any point in the boundary of three pairwise disjoint invariant
connected open sets on the sphere must be a fixed point.
The latter has many consequences. For example: if the “lakes
of Wada” continuum is invariant by an area-preserving map f ,
then it is fixed pointwise by f 3.
(work in progress with Tal and Le Calvez).

Problems

I Uniform boundedness of islands, independent of periods?
(Addas-Zanata: True for C 1+α)

I Irrotational homeomorphisms: is sublinear diffusion possible in
arbitrary surfaces?
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